Folate receptor-targeted and cathepsin B-activatable nanoprobe for in situ therapeutic monitoring of photosensitive cell death.
نویسندگان
چکیده
The integration of diagnostic and therapeutic functions in a single system holds great promise to enhance the theranostic efficacy and prevent the under- or overtreatment. Herein, a folate receptor-targeted and cathepsin B-activatable nanoprobe is designed for background-free cancer imaging and selective therapy. The nanoprobe is prepared by noncovalently assembling phospholipid-poly(ethylene oxide) modified folate and photosensitizer-labeled peptide on the surface of graphene oxide. After selective uptake of the nanoprobe into lysosome of cancer cells via folate receptor-mediated endocytosis, the peptide can be cleaved to release the photosensitizer in the presence of cancer-associated cathepsin B, which leads to 18-fold fluorescence enhancement for cancer discrimination and specific detection of intracellular cathepsin B. Under irradiation, the released photosensitizer induces the formation of cytotoxic singlet oxygen for triggering photosensitive lysosomal cell death. After lysosomal destruction, the lighted photosensitizer diffuses from lysosome into cytoplasm, which provides a visible method for in situ monitoring of therapeutic efficacy. The nanoprobe exhibits negligible dark toxicity and high phototoxicity with the cell mortality rate of 0.06% and 72.1%, respectively, and the latter is specific to folate receptor-positive cancer cells. Therefore, this work provides a simple but powerful protocol with great potential in precise cancer imaging, therapy, and therapeutic monitoring.
منابع مشابه
Smart dual-functional warhead for folate receptor-specific activatable imaging and photodynamic therapy.
A smart dual-targeted theranostic agent becomes highly fluorescent and phototoxic only when its linker is cleaved by tumor-associated lysosomal enzyme cathepsin B after internalization into folate receptor-positive cancer cells.
متن کاملA folate receptor-specific activatable probe for near-infrared fluorescence imaging of ovarian cancer.
We have developed a folate receptor-specific activatable probe for in vivo near-infrared fluorescence imaging of ovarian cancer. This probe becomes highly fluorescent only when its linker is cleaved by a tumor-associated lysosomal enzyme cathepsin B after internalization into folate receptor-positive cancer cells.
متن کاملA pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics.
This work reports a newly designed pH-activatable and aniline-substituted aza-boron-dipyrromethene as a trifunctional photosensitizer to achieve highly selective tumor imaging, efficient photodynamic therapy (PDT) and therapeutic self-monitoring through encapsulation in a cRGD-functionalized nanomicelle. The diethylaminophenyl is introduced in to the structure for pH-activatable near-infrared f...
متن کاملA pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics† †Electronic supplementary information (ESI) available: Experimental details and supplementary figures. See DOI: 10.1039/c5sc01721a Click here for additional data file.
This work reports a newly designed pH-activatable and aniline-substituted aza-boron-dipyrromethene as a trifunctional photosensitizer to achieve highly selective tumor imaging, efficient photodynamic therapy (PDT) and therapeutic self-monitoring through encapsulation in a cRGD-functionalized nanomicelle. The diethylaminophenyl is introduced in to the structure for pH-activatable near-infrared f...
متن کاملCytotoxicity of 5-ALA-conjugated bismuth oxidenanoparticles on KB cell line
Introduction: In recent years, bismuth-based nanomaterials have been widely used in medical researches as imaging, drug delivery and x-ray radiosensitizing agents. Due to their anti-microbial effects against Helicobacter pylori (HP), bismuth colloidal compounds are used to treat various types of diseases such as chronic gastritis. Despite their advantages, bismuth-based compoun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 87 7 شماره
صفحات -
تاریخ انتشار 2015